

FIAlyzer-1000 Methods List – February 2024

Alkalinity												
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes				
ALK-W-1-1	1 10	50 500	0.3 3	g CaCO3 / L	50	Waters	EPA 310.2	Methyl Orange method.				
Ammonia												
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes				
NH3-S-1-1	0.02 0.075	0.5 50	0.006 0.025	mg N / L as NH3	120	Soil extracts	N/A	Salicylate method for soil extracts.				
NH3-W-1-2	0.03 0.5	5 30	0.01 0.15	mg N / L as NH3	60	Waters	EPA 350.1	Salicylate method with gas diffusion, can also be used for TKN analysis.				
NH3-W-1-4	0.5	20	0.1	mg N / L as NH3	60	Waters	SM 4500- NH3 H.	Salicylate or phenate method with gas diffusion.				
NH3-W-2-1	0.009	2	0.003	mg N / L as NH3	60	Waters	EPA 350.1	Salicylate or phenate method with gas diffusion, utilizing low-noise detector, can also be used for TKN analysis.				
NH3-W-2-3	0.01	0.5	0.003	mg N / L as NH3	60	Waters	SM 4500- NH3 H.	Salicylate or phenate method with gas diffusion, utilizing low-noise detector, can also be used for TKN analysis.				
NH3-W-2-5	0.003	1	0.001	mg N / L as NH3	60	Waters	SM 4500- NH3 H.	Phenate method, no gas diffusion				
NH3-W-2-6	0.003	1	0.001	mg N / L as NH3	60	Waters	EPA 350.1	Phenate method, no gas diffusion				
NH3-W-3-2	0.015	10	0.005	mg N / L as NH3	60	Waters	EPA FIAlab 100	OPA method with gas diffusion, utilizing fluorometric detector, can also be used for TKN analysis.				
NH3-W-3-3	0.05	5	0.015	µmol NH3 / L	60	Waters	N/A	OPA method, utilizing fluorometric detector, no gas diffusion, for seawater matrices.				

Chloramine											
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes			
CLNH2-W-1-1	0.05	2	0.025	mg N / L	60	Waters	N/A	Salicylate method.			
Chloride											
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes			
CL-S-1-1	5	200	2	mg Cl / L	120	Soil extracts	N/A	Ferric chloride and mercuric (II) thiocyanate method, utilizing LED light source.			
CL-W-1-1	0.05 1	5 100	0.02 0.4	mg Cl / L	120	Waters	SM 4500- Cl-	Ferric chloride and mercuric (II) thiocyanate method, utilizing LED light source.			
CL-W-2-1	0.2	20	0.05	mg Cl / L	60	Waters	SM 4500- Cl-	Ferric chloride and mercuric (II) thiocyanate method.			
Chloralkali Methods											
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes			
CL-C-1-1	5	40	2	mg NaCl / L	60	Chloralkali samples	N/A	For samples from membrane cell process. Ferric chloride and mercuric (II) thiocyanate method, utilizing LED light source.			
CL-C-1-2	100	250	N/A	mg NaCl / L	65	Chloralkali samples	N/A	For samples from diaphragm cell process. Ferric chloride and mercuric (II) thiocyanate method, utilizing LED light source.			
CLO-C-1-1	1.6	75	N/A	mg NaOCl/L	40	Chloralkali samples	N/A	For samples from diaphragm cell process. Potassium iodide method, utilizing a dual LED light source.			
CLO-C-1-2	1.25	10	0.2	mg NaOCl/L	25	Chloralkali samples	N/A	For samples from membrane cell process. Acidification - Methyl Orange method, utilizing gas diffusion.			
CLO3-C-1-1	0.1	2	N/A	NaClO3/L	60	Chloralkali samples	N/A	For samples from diaphragm cell process. Fe(II) / ferrozine method.			
CLO3-C-1-2	0.5	10	N/A	NaClO3/L	55	Chloralkali samples	N/A	For samples from membrane cell process. Fe(II) / ferrozine method.			
NAOH-C-1-1	29	34	N/A	% NaOH	55	Chloralkali samples	N/A	For samples from membrane cell process. Cu(II) / ethylenediamine method.			
NAOH-C-1-2	70	200	N/A	% NaOH	100	Chloralkali samples	N/A	For samples from membrane cell or diaphragm cell process. Cu(II) / ethylenediamine method.			

						Cyanio	de				
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes			
CN-W-1-1	10	500	3	μg CN / L	60	Waters	EPA 335.4	Total CN method for post-distillation samples. Pyridine- barbiturate method.			
CN-W-2-1	1 20	500 10,000	0.4 8	µg CN / L	60	Waters	EPA 335.4	Total CN method for post-distillation samples. Pyridine- barbiturate method, utilizing low-noise detector.			
CN-W-2-2	1	100	0.3	μg CN / L	30	Waters	SM 4500- CN O.	Total CN method with in-line digestion and colorimetric detection.			
CN-W-4-1	10	500	3	μg CN / L	50	Waters	EPA OIA- 1677	Free / available / WAD CN method, utilizing gas diffusion and amperometric detection.			
CN-W-4-2	1	500	0.5	µg CN / L	50	Waters	ASTM D7511-09	Total CN method with in-line digestion, utilizing gas diffusion and amperometric detection.			
Fluoride											
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes			
F-W-9-1	0.06	5	0.02	mg F / L	60	Waters	SM 4500-F F.	Ion-selective electrode (ISE) method.			
Hardness											
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes			
HRD-W-1-1	5	300	2	mg CaCO3 / L	60	Waters	EPA 130.1	Calmagite method.			
					Hex	avalent C	hromium				
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes			
CR6-W-1-1	50	500	15	µg Cr6+ / L	60	Waters	SM 3500- Cr B.	Diphenylcarbazide method.			
CR6-W-2-1	1	500	0.3	µg Cr6+ / L	60	Waters	SM 3500- Cr B.	Diphenylcarbazide method.			
						Iron					
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes			
FE-W-2-1	50	500	2	µg Fe / L	60	Waters	N/A	TPTZ method.			

					ĺ	Nitrate + I	Nitrite	
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes
NO3-S-1-1	0.003 0.008	1 25	0.001 0.003	mg N / L as NOx	120	Soil extracts	N/A	Griess method with cadmium reduction.
NO3-S-1-2	0.5	60	0.1	mg N / L as NOx	60	Soil extracts	N/A	Griess method with cadmium reduction and in-line dialysis.
NO3-S-2-1	0.1	60	0.02	mg N / L as NOx	120	Soil extracts	N/A	Griess method with cadmium reduction and in-line dialysis, utilizing low-noise detector
NO3-W-1-1	0.003 0.008	1 25	0.001 0.003	mg N / L as NOx	120	Waters	EPA 353.2	Griess method with cadmium reduction.
NO3-W-1-2	0.003 0.008	1 25	0.001 0.003	mg N / L as NOx	120	Waters	SM 4500- NO3 F.	Griess method with cadmium reduction.
NO3-W-2-1	0.001	25	0.0004	mg N / L as NOx	120	Waters	EPA 353.2	Griess method with cadmium reduction, utilizing low-noise detector.
NO3-W-2-2	0.001	25	0.0004	mg N / L as NOx	120	Waters	SM 4500- NO3 F.	Griess method with cadmium reduction, utilizing low-noise detector.
NO3-W-2-4	0.001	25	0.0004	mg N / L as NOx	60	Waters	EPA 353.2	Griess method with cadmium reduction, utilizing low-noise detector. For seawater matrices.
						Nitrit	te	
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes
NO2-S-1-1	0.005 0.015	2.5 40	0.002 0.005	mg N / L as NOx	120	Soil Extracts	N/A	Griess method.
NO2-S-1-3	0.3	35	0.06	mg N / L as NOx	60	Soil Extracts	N/A	Griess method with in-line dialysis.
NO2-S-2-2	0.08	9	0.03	mg N / L as NOx	60	Soil Extracts	N/A	Griess method with in-line dialysis, utilizing low-noise detector.
NO2-W-1-2	0.005 0.015	2.5 40	0.002 0.005	mg N / L as NOx	120	Waters	EPA 353.2	Griess method.
NO2-W-2-1	0.0005	15	0.0002	mg N / L as NOx	120	Waters	EPA 353.2	Griess method utilizing low-noise detector.

					Nitro	gen – Kje	ldahl (TKN	1)				
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes				
NH3-W-1-1	0.5	20	0.1	mg N / L as NH3	120	Waters	N/A	For TKN digests. Salicylate method with gas diffusion.				
NH3-W-1-3	0.5	20	0.1	mg N / L as NH3	60	Waters	EPA 351.2	For TKN digests. Salicylate method with gas diffusion.				
NH3-W-1-5	0.5	20	0.1	mg N / L as NH3	60	Waters	SM 4500- Norg D.	For TKN digests. Salicylate method with gas diffusion.				
NH3-W-2-2	0.12	0.5	0.04	mg N / L as NH3	60	Waters	SM 4500- Norg D.	For TKN digests. Salicylate method with gas diffusion, utilizing low-noise detector.				
NH3-W-2-4	0.12	0.5	0.04	mg N / L as NH3	60	Waters	EPA 351.2	For TKN digests. Salicylate method with gas diffusion, utilizing low-noise detector.				
NH3-W-3-1	0.05	10	0.012	mg N / L as NH3	60	Waters	EPA FIALAB 100	For TKN digests. OPA method with gas diffusion, utilizing fluorometric detector.				
Nitrogen – Total												
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes				
NO3-W-1-3	1	40	0.3	mg N / L	40	Waters	N/A	Offline persulfate Digestion. Griess Method with Cadmium reduction. Can also be utilized for Total Phosphorus.				
NO3-W-2-5	0.02	5	0.01	mg N / L	40	Waters	N/A	For Total N/P persulfate digests (Dennis Jones). Griess method with cadmium reduction, utilizing low-noise detector.				
						Phen	ol					
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes				
PHNL-W-1-1	0.05	0.5	0.02	g Phenol / L	60	Waters	EPA 420.1	For post-distillation samples. 4-aminoantipyrine method.				
PHNL-W-1-2	0.05	0.5	0.02	g Phenol / L	60	Waters	EPA 420.4	For post-distillation samples. 4-aminoantipyrine method.				
PHNL-W-2-1	0.005 0.013	0.2 0.5	0.001 0.003	g Phenol / L	60	Waters	EPA 420.1	For post-distillation samples. 4-aminoantipyrine method, utilizing low-noise detector.				
PHNL-W-2-2	0.005 0.013	0.2 0.5	0.001 0.003	g Phenol / L	60	Waters	EPA 420.4	For post-distillation samples. 4-aminoantipyrine method, utilizing low-noise detector.				

					P	hosphate	- Ortho	
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes
PO4-S-1-1	0.08 0.2	0.9 45	0.03 0.06	mg P / L	120	Soil extracts	N/A	Molybdenum blue method.
PO4-S-1-2	0.2	45	0.06	mg P / L	240	Soil extracts	N/A	Molybdenum blue method, with fast-phosphate manifold for high throughputs.
PO4-S-1-3	0.1	5	0.05	mg P / L	120	Soil extracts	N/A	For Olsen extracts. Molybdenum blue method.
PO4-S-1-4	0.1	5	0.05	mg P / L	120	Soil extracts	N/A	For Olsen extracts. Molybdenum blue method, utilizing LED light source.
PO4-W-1-1	0.08 0.2	0.9 45	0.03 0.06	mg P / L	60	Waters	EPA 365.1	Molybdenum blue method.
PO4-W-2-1	3	450	1	μg P / L	60	Waters	EPA 365.1	Molybdenum blue method, utilizing low-noise detector.
PO4-W-2-3	15	1000	5	μg P / L	60	Waters	SM 4500-P F.	Molybdenum blue method.
PO4-W-2-4	1 20	1000 20,000	0.4 8	µg P / L	60	Waters	SM 4500-P G.	Molybdenum blue method.
PO4-W-2-6	0.03	30	0.01	µmol P / L	60	Waters	N/A	Molybdenum blue method, for seawater matrices.
					Pł	nosphorus	s – Total	
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes
PO4-W-1-2	0.08 0.2	0.9 45	0.03 0.06	mg P / L	60	Waters	EPA 365.1	For Total P persulfate digests. Molybdenum blue method.
PO4-W-2-2	12	1000	4	µg P / L	60	Waters	EPA 365.1	For Total P persulfate digests. Molybdenum blue method, utilizing low-noise detector.
PO4-W-2-5	6	1000	2	μg Ρ / L	60	Waters	SM 4500-P H.	For Total P persulfate digests. Molybdenum blue method, utilizing low-noise detector.
					Phospha	te – Total	Kjeldahl	(ТКР)
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes
PO4-W-1-3	0.08 0.2	0.9 45	0.03 0.06	mg P / L	60	Waters	EPA 365.4	For TKP digests. Molybdenum blue method.
PO4-W-2-7	0.03	45	0.01	mg P / L	60	Waters	EPA 365.4	For TKP digests. Molybdenum blue method, utilizing low- noise detector.

						Potassi	ium					
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes				
K-S-9-1	30	600	10	mg K / L	60	Soil extracts	N/A	Using flame photometer.				
Silica												
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes				
SIO2-W-1-1	0.24	2.7	0.09	mg SiO2 / L	60	Waters	SM 4500- SiO2 F.	Molybdenum blue method.				
SIO2-W-2-1	0.003 0.04	1.5 20	0.0015 0.02	mg SiO2 / L	60	Waters	SM 4500- SiO2 F.	Molybdenum blue method, utilizing low-noise detector.				
SIO2-W-2-2	0.003 0.04	1.5 20	0.0015 0.02	mg SiO2 / L	60	Waters	N/A	Molybdenum blue method, utilizing low-noise detector. For seawater matrices.				
Sodium												
NA-S-9-1	60	600	20	mg Na / L	60	Soil extracts	N/A	Using flame photometer.				
						Sulfa	te					
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes				
SO4-S-1-1	2	20	0.4	mg S / L	120	Soil extracts	N/A	Barium chloride turbidity method, utilizing syringe pump for clean cycle.				
SO4-W-1-1	1.5 50	25 300	0.5 6	mg SO4 /L	60	Waters	SM 4500- SO42- G	Barium chloride and methylthymol blue (MTB) method with IEX purification.				
SO4-W-1-2	1.5 50	25 300	0.5 6	mg SO4 /L	60	Waters	EPA 375.2	Barium chloride and methylthymol blue (MTB) method with IEX purification.				
SO4-W-1-3	1	3	50	mg SO4 /L	60	Waters	SM 4500- SO42- F	Barium chloride and methylthymol blue (MTB) method with IEX purification.				
						Sulfic	le					
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes				
S2-W-2-1	0.02	2	0.005	mg S/L	60	Waters	SM 4500- S2 I.	DMPD / Methylene Blue method				

	Urea												
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes					
UREA-W-2-1	0.01	1	0.003	mg N / L as Urea	24	Waters	N/A	Diacetyl monoxime method.					